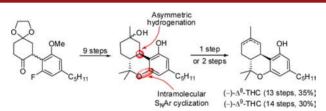
ORGANIC LETTERS

2013 Vol. 15, No. 4 764–767

Enantioselective Total Synthesis of (-)- Δ^8 -THC and (-)- Δ^9 -THC via Catalytic Asymmetric Hydrogenation and S_N Ar Cyclization


Li-Jie Cheng, Jian-Hua Xie, Yong Chen, Li-Xin Wang, and Qi-Lin Zhou*

State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China

jhxie@nankai.edu.cn; qlzhou@nankai.edu.cn

Received December 7, 2012

ABSTRACT

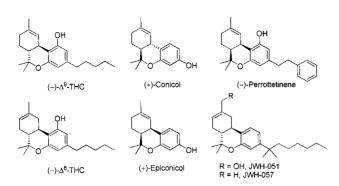
The highly efficient asymmetric total syntheses of (-)- Δ^8 -tetrahydrocannabinol ((-)- Δ^8 -THC) (13 steps, 35%) and (-)- Δ^9 -tetrahydrocannabinol ((-)- Δ^9 -THC) (14 steps, 30%) have been developed by using ruthenium-catalyzed asymmetric hydrogenation of racemic α -aryl cyclic ketones via dynamic kinetic resolution and intramolecular S_NAr cyclization.

Many biologically active natural products and pharmaceutical agents contain chiral hexahydro-6,6-dimethyl-6H-benzo[e]chromene motifs (Figure 1). (—)- Δ^9 -Tetrahydro-cannabinol ((—)- Δ^9 -THC), isolated from *Cannabis sativa L*. in 1964, is one of the most well-known examples of this class of tricyclic compounds and has been used as a medicine under the trademarks of Marinol and Sativex for the treatment of cancer, nausea, and vomiting during chemotherapy and spasticity in patients with multiple sclerosis. (—)- Δ^8 -Tetrahydrocannabinol ((—)- Δ^8 -THC), also isolated from *Cannabis sativa L*., is a double bond isomer of (—)- Δ^9 -THC and functions similarly to (—)- Δ^9 -THC pharmacologically.

(+)-Conicol⁴ and its epimer (+)-epiconicol,⁵ isolated from ascidians *Aplidium conicum* and *Synoicum castellatum*, are also tetrahydrocanabinol derivatives, and the latter exhibits mild cytotoxic activities against P388 (murine leukemia), A549 (human lung cacinoma), etc. Moreover, the natural bibenzyl tetrahydrocannabinol (–)-perrottetinene,⁶ isolated from the liverwort plant *Radula marginata*, and synthetic pharmaceutical agents such as 1-deoxyl- Δ^8 -tetrahydrocannabinols JWH-051 and JWH-057⁷ also contain a chiral hexahydro-6,6-dimethyl-6*H*-benzo[*c*]chromene structure. Thus, the enantioselective construction of the chiral hexahydro-6,6-dimethyl-6*H*-benzo[*c*]chromene motif constitutes a basic requisite for the stereoselective synthesis of tetrahydrocanabinol derivatives (and/or analogues).

Although considerable efforts have been devoted to the development of the methodology for the synthesis of chiral hexahydro-6,6-dimethyl-6*H*-benzo[*c*]chromenes, most of the methods reported in the literature produced these

⁽¹⁾ Gaoni, Y.; Mechoulam, R. J. Am. Chem. Soc. 1964, 86, 1646. (2) (a) Sarfaraz, S.; Adhami, V. M.; Syed, D. N.; Afaq, F.; Mukhtar, H. Cancer Res. 2008, 68, 339. (b) Ware, M. A.; Daeninck, P.; Maida, V. Ther. Clin. Risk Manage. 2008, 4, 99. (c) Pertwee, R. G. Mol. Neurobiol. 2007, 36, 45. (d) Mackie, K. Annu. Rev. Pharmacol. Toxicol. 2006, 46, 101. (e) Romero, J.; Lastres-Becker, L.; deMiguel, R.; Berrendero, F.; Ramos, J. A.; Fernandez-Ruiz J. Pharmacol. Ther. 2002, 95, 137.

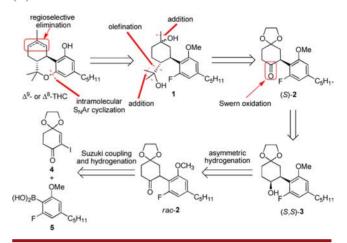

^{(3) (}a) Taylor, E. C.; Lenard, K.; Shvo, Y. *J. Am. Chem. Soc.* **1966**, 88, 367. (b) Fahrenholtz, K. E.; Lurie, M.; Kierstead, R. W. *J. Am. Chem. Soc.* **1967**, 89, 5934. (c) Binder, M.; Franke, I.; Schmidt, B.; Dietrich, W. *Helv. Chim. Acta* **1982**, 65, 807.

⁽⁴⁾ Garrido, L.; Zubía, E.; Ortega, M. J.; Salvá, J. J. Nat. Prod. 2002, 65, 1328

⁽⁵⁾ Carroll, A. R.; Bowden, B. F.; Coll, J. C. Aust. J. Chem. 1993, 46, 1079.

^{(6) (}a) Cullmann, F.; Becker, H. Z. Naturforsch. 1999, 54c, 147. (b) Toyota, M.; Shimamura, T.; Ishii, H.; Renner, M.; Braggins, J.; Asakawa, Y. Chem. Pharm. Bull. 2002, 50, 1390.

⁽⁷⁾ Huffman, J. W.; Yu, S.; Showalter, V.; Abood, M. E.; Wiley, J. L.; Compton, D. R.; Martin, B. R.; Bramblett, R. D.; Reggio, P. H. *J. Med. Chem.* **1996**, *39*, 3875.


Figure 1. Natural products and pharmaceutical agents contained chiral hexahydro-6,6-dimethyl-6*H*-benzo[*c*]chromene motifs.

tricyclic compounds either in racemic form or from chiral building blocks. Very few examples used asymmetric catalysis to construct the chiral hexahydro-6,6-dimethyl-6H-benzo[c]chromene structure. Evans et al. Preported an asymmetric synthesis of (+)- Δ 9-THC via an enantioselective Diels—Alder reaction catalyzed by copper(II) complexes of chiral bis(oxazoline) ligands. Trost and Dogra pplied a molybdenum-catalyzed asymmetric allylic alkylation reaction in the synthesis of (-)- Δ 9-THC. Recently, Hong et al. Proported a total synthesis of (+)-conicol by using an asymmetric organocatalytic cascade reaction.

The catalytic asymmetric hydrogenation is one of the most versatile and powerful tools for the preparation of optical compounds and has been successfully applied to the total synthesis of biologically active natural products and pharmaceutics. Pecently, we developed highly efficient ruthenium-catalyzed asymmetric hydrogenations of racemic α -substituted ketones and aldehydes via dynamic kinetic resolution $(DKR)^{13}$ for the preparation of chiral alcohols with one or two continuous stereocenters, which have been successfully applied to the enantioselective total synthesis of natural products such as (–)-galanthamine 14

and pharmaceutical agents such as (-)-CP-55940. ¹⁵ Herein, we reported a highly efficient asymmetric total synthesis of (-)- Δ^9 -THC and (-)- Δ^8 -THC by using catalytic asymmetric hydrogenation of ketones via DKR and intramolecular S_N Ar cyclization as key steps.

Scheme 1. Retrosynthetic Analysis of (-)- Δ^8 -THC and (-)- Δ^9 -THC

The retrosynthetic analysis suggested that the target molecules (-)- Δ^8 -THC and (-)- Δ^9 -THC could be synthesized from the precursor 1 using an intramolecular S_NAr cyclization to construct the benzopyran ring and a regioselective elimination of H₂O to form the double bond (Scheme 1). The diol 1 was expected to be obtained from optically active α -arylcycloketone (S)-2 via several steps including olefination and the addition of a methyl metal reagent such as MeMgBr to the carbonyl groups of both the ketone and ester group. According to our previous procedure for the synthesis of potent cannabinoid receptor agonist (–)-CP-55940, 15 the chiral α-aryl-1,4-cyclohexanedione monoethylene acetal (S)-2 could be easily obtained from the Suzuki cross-coupling of 2-iodo-1,4cyclohexanedione monoethylene acetal (4) with fluorinesubstituted phenylboronic acid 5 followed by a palladiumcatalyzed hydrogenation, ruthenium-catalyzed asymmetric hydrogenation via DKR, and Swern oxidation.

Initially, we attempted to construct the benzopyran ring by using ZnBr₂-promoted intramolecular cyclization according to the literature method. ¹⁶ As a model reaction, the asymmetric hydrogenation of racemic 2-(2,6-dimethoxyphenyl)cyclohexanone catalyzed by RuCl₂((S)-SDP)((R,R)-DPEN) ((S_a ,R,R)-6) ¹⁷ was carried out. This hydrogenation reaction was found to be very difficult and impractical presumably due to the steric hindrance caused by two *ortho*-methoxy groups in the substrate. ¹⁸ In contrast, the α -arylcyclohexanones with one *ortho*-methoxy group were hydrogenated smoothly with the same catalyst to produce

Org. Lett., Vol. 15, No. 4, 2013

⁽⁸⁾ For selected recent papers on synthesis of cannabinoids, see: (d) William, A. D.; Kobayashi, Y. *Org. Lett.* **2001**, *3*, 2017. (e) William, A. D.; Kobayashi, Y. *J. Org. Chem.* **2002**, *67*, 8771. (f) Pearson, L. E.; Kanizaj, N.; Willis, A. C.; Paddon-Row, M. N.; Sherburn, M. S. *Chem.—Eur. J.* **2010**, *16*, 8280. (g) Ballerini, E.; Minuti, L.; Piermatti, O. *J. Org. Chem.* **2010**, *75*, 4251. (h) Huang, Q.; Ma, B.; Li, X.; Pan, X.; She, X. *Synthesis* **2010**, 1766. (i) Minuti, L.; Ballerini, E. *J. Org. Chem.* **2011**, *76*, 5392.

^{(9) (}a) Evans, D. A.; Shaughnessy, E. A.; Barnes, D. M. *Tetrahedron Lett.* **1997**, *38*, 3193. (b) Evans, D. A.; Barnes, D. M.; Johnson, J. S.; Lectka, T.; Matt, P. V.; Miller, S. J.; Murry, J. A.; Norcross, R. D.; Shaughnessy, E. A.; Campos, K. R. *J. Am. Chem. Soc.* **1999**, *121*, 7582.

⁽¹⁰⁾ Trost, B. M.; Dogra, K. Org. Lett. 2007, 9, 861.
(11) Hong, B.-C.; Kotame, P.; Tsai, C.-W.; Liao, J.-H. Org. Lett. 2010, 12, 776.

⁽¹²⁾ For reviews, see: (a) Ohkuma, T.; Kitamura, M.; Noyori, R. In *Catalytic Asymmetric Synthesis*, 2nd ed.; Ojima, I., Ed.; Wiley-Interscience: New York, 2000; pp 1–110. (b) de Vries, J. G.; Elsevier, C. J. *The Handbook of Homogeneous Hydrogenation*; Wiley-VCH: Weinheim, 2007. (c) Tang, W.; Zhang, X. *Chem. Rev.* **2003**, *103*, 3029. (d) Xie, J.-H.; Zhou, Q.-L. *Acta Chim. Sinica* **2012**, *70*, 1427.

^{(13) (}a) Xie, J.-H.; Zhou, Z.-T.; Kong, W.-L.; Zhou, Q.-L. *J. Am. Chem. Soc.* **2007**, *129*, 1868. (b) Xie, J.-H.; Liu, S.; Kong, W.-L.; Wang, X.-C.; Wang, L.-X.; Zhou, Q.-L. *J. Am. Chem. Soc.* **2009**, *131*, 4222.

⁽¹⁴⁾ Chen, J.-Q.; Xie, J.-H.; Bao, D.-H.; Liu, S.; Zhou, Q.-L. Org. Lett. 2012, 14, 2714.

⁽¹⁵⁾ Cheng, L.-J.; Xie, J.-H.; Wang, L.-X.; Zhou, Q.-L. Adv. Synth. Catal. 2012, 354, 1105.

⁽¹⁶⁾ Stoss, P.; Merrath, P. Synlett 1991, 553.

⁽¹⁷⁾ Xie, J.-H.; Wang, L.-X.; Fu, Y.; Zhu, S.-F.; Fan, B.-M.; Duan, H.-F.; Zhou, Q.-L. *J. Am. Chem. Soc.* **2003**, *125*, 4404.

the corresponding chiral alcohols with excellent enantioselectivity and *cis*-selectivity in our previous study. ¹⁵ Thus, we introduced a fluorine atom, which has a similar size as hydrogen, to replace one of the methoxy groups of the 2-(2,6-dimethoxyphenyl)cyclohexanone and designed an intramolecular S_NAr cyclization for the construction of a benzopyran ring (Scheme 2).

Scheme 2. Synthesis of Racemic α-Arylcyclohexanone 2

The fluorinated α -arylcyclohexanone rac-2 was synthesized from commercially available 1,4-cyclohexenedione monoethylene acetal 7 according to the method we recently developed (Scheme 2). The cyclic enone 7 was iodinated with iodine at room temperature to afford cyclic α -iodoenone 4 in 84% yield. The Suzuki cross-coupling of 4 with arylboronic acid 5, which was prepared from 3-flouro-5-bromoanisole in two steps including boronation with triisopropyl borate (see Supporting Information), in the presence of 5.0 mol % of Pd(PPh₃)₄ as a catalyst and aqueous Na₂CO₃ (2.8 equiv) as a base in dimethoxyethane yielded the α -arylated cyclic enone 8 in 93% yield. The enone 8 was hydrogenated on Pd/C (10 mol %) to produce ketone rac-2 in 90% yield.

When the cyclic ketone rac-2 was subjected to the hydrogenation (conditions: S/C = 1000, 50 atm of H_2 , 0.05 M [KO^tBu], in ^tPrOH at room temperature) with the catalyst (S_a, R, R) -6, we were delighted to find that the hydrogenation completed in 12 h and the desired product, chiral alcohol (S,S)-3, was obtained in 98% yield with 96% ee and >99:1 cis/trans-selectivity (Scheme 3). The chiral alcohol (S,S)-3 was oxidized to ketone (S)-2 in 96% yield by Swern oxidation (conditions: 2.4 equiv of dimethyl sulfoxide, 1.2 equiv of oxalyl chloride, and 2.4 equiv of Et₃N). The olefination of (S)-2 with the Wittig reagent, which was generated in situ from MeOCH₂PPh₃Cl (2.0 equiv) and BuLi (2.0 equiv), yielded the olefin (R)-9 in 90% yield (*E*-isomer/*Z*-isomer = 4:1). The olefin (*R*)-9 was treated with an aqueous AcOH solution at 100 °C for 2 h, ²⁰ followed by an oxidation with the Jones reagent (1.2 equiv) in acetone, esterification with MeI in the presence of K₂CO₃ as a base, and isomerization with NaOMe (1 M) in MeOH at room temperature to afford ester **10** in 76% yield (4 steps) with 31:1 *trans/cis*-selectivity and 93% ee. A slight loss of ee value possibly occurred in the olefination step of (*S*)-**2** with the Wittig reagent, which involved the use of a strong base. Ester **10** reacted with MeMgBr in refluxing THF for 3 h to provide chiral diol **1** in 91% yield.

Scheme 3. Synthesis of Chiral Diol 1

OMe
$$H_2$$
 (50 atm)/ (S_a , R , R)-6 (S_a)-6 (S_a)-7 (S_a)-7 (S_a)-8 (S_a)-8 (S_a)-9 (S_a)-1 (S_a)-2 (S_a)-3 (S_a

With enantiomer-enriched diol 1 in hand, we then attempted to construct the benzopyran ring via a basepromoted intramolecular S_NAr cyclization and to complete the enantioselective synthesis of $(-)-\Delta^8$ -THC and (-)- Δ^9 -THC. The mixture of *cis*- and *trans*-diol 1 was treated with NaH (5.0 equiv) in refluxing DMF for 1 h to yield the tricyclic compound 11 in 94% yield (Scheme 4). Demethylation of 11 by NaS(CH₂)₂NEt₂ generated in situ from NaH (10.0 equiv) and HS(CH₂)₂NEt₂ (10.0 equiv) afforded the compound 12 in 95% yield. Since the intramolecular S_NAr cyclization and the demethylation reaction proceeded under similar reaction conditions, we attempted to perform these two reactions in one pot. In the presence of 10.0 equiv of NaH and 5.0 equiv of HS(CH₂)₂NEt₂ in refluxing DMF, we delightedly obtained the desired compound 12 in high yield (90%). An acid-promoted dehydration of compound 12 in refluxing benzene in the presence of 20 mol % TsOH according to the literature method^{3b} produced the target molecule (–)- Δ^8 -THC in 96% yield²¹ ([α]_D²⁵ –163 (c 1.0, CHCl₃); lit.¹⁰ $[\alpha]_{D}^{25}$ -152 (c 0.46, CHCl₃)). When compound 12 was converted to a chlorinated intermediate with the Lucas reagent (ZnCl₂/HCl) in acetic acid at room temperature, followed by treatment with potassium tert-pentoxide in benzene at 65 °C for 15 min using the same procedure by Petrzilka et al., ²² the target compound (-)- Δ^9 -THC was

766 Org. Lett., Vol. 15, No. 4, 2013

⁽¹⁸⁾ The asymmetric hydrogenation of racemic 2-(2,6-dimethoxyphenyl)cyclohexanone catalyzed by $RuCl_2((S)-SDP)((R,R)-DPEN)$ (conditions: S/C=500, 50 atm H_2 , room temperature) afforded the desired product in less than 10% yield.

⁽¹⁹⁾ Wustrow, D. J.; Wise, L. D. Synthesis 1991, 993.

⁽²⁰⁾ Petrzilka, M.; Germann, A. Mol. Cryst. Liq. Cryst. 1985, 131, 327.

^{(21) (-)-} Δ^8 -THC/(-)- Δ^9 -THC > 99:1.

⁽²²⁾ Petrzika, T.; Haefliger, W.; Sikemeier, C. Helv. Chim. Acta 1969, 52, 1102.

^{(23) (-)-} Δ^9 -THC/(-)- Δ^8 -THC = 97:3. The same results were obtained by using isolated *cis*-1 or *trans*-1 as starting material; see Supporting Information.

obtained in 80% yield ($[\alpha]_D^{25}$ –232 (c 0.96, CHCl₃); lit. ^{8g} $[\alpha]_D^{25}$ –245 (c 0.78, CHCl₃)). ²³ The NMR spectroscopic data and the optical rotations of our synthetic (–)- Δ ⁸-THC and (–)- Δ ⁹-THC are identical to those reported in previous syntheses.

Scheme 4. Synthesis of (-)- Δ^8 -THC and (-)- Δ^9 -THC

In summary, we have developed a new efficient methodology for the enantioselective syntheses of $(-)-\Delta^8$ - and

(–)- Δ^9 -THC. With commercially available 1,4-cyclohexenedione monoethylene acetal 7 as starting material and the ruthenium-catalyzed asymmetric hydrogenation of ketone via DKR and intramolecular S_N Ar cyclization as key steps, the optical (–)- Δ^8 -THC and (–)- Δ^9 -THC were synthesized in 35% and 30% overall yields via 13 and 14 steps, respectively. This synthetic strategy has a high potential for wide application in the synthesis of other biologically active natural products and pharmaceutical agents containing chiral hexahydro-6,6-dimethyl-6H-benzo[c]chromene motifs.

Acknowledgment. We thank the National Natural Science Foundation of China, the National Basic Research Program of China (973 Program, No.2012CB821600), and "111" Project of the Ministry of Education of China (Grant No. B06005) for financial support.

Supporting Information Available. Experimental procedures and the characterizations of substrates and products. This material is available free of charge via the Internet at http://pubs.acs.org.

The authors declare no competing financial interest.

Org. Lett., Vol. 15, No. 4, 2013